
Electronic 
Golf League Scheduler 

Ethan Evans, Aidan Andreas, Brady Zalasky, Nick Landon, Maxwell Farver

Team: sddec21-03
Website: https://sddec21-03.sd.ece.iastate.edu

Advisor: Mai Zheng
Client: Tina Prouty

https://sddec21-03.sd.ece.iastate.edu


Project Overview



Problem Statement

● Create a web application to handle golf teams and matchups

● Current system can’t handle the current club size

● New system should be user friendly and easy to maintain

● Ideally should cost no more than a few dollars a month



Team Member Roles 

Frontend Brady

Backend Aidan and Nick

Full-Stack Max and Ethan



Wireframe Designs



Project Requirements

● Functional
○ User input for teams and players
○ Leaderboard to keep track of score
○ Schedule for upcoming outings 
○ Creates a schedule for when a new outing is created

● Economic 
○ Minimal or low monthly cost

● User Interface
○ Simple to use
○ Features clearly defined
○ Modern and professional design



Technical Considerations

● Cost played an important role

● AWS preferred cloud provider
○ Generous free tier 

● DynamoDB
○ Low latency 

● NodeJS
○ Handle cold starts well

● Netlify
○ Simplicity of deployment and cost



Development Approach

● Utilized a Trello board for Project Management
○ Backlog, In Progress, Ready for Review, Done

○ Color coding and assigning tasks

● Slack was form of a communication to bring up questions/concerns

● Development had to be done on a feature branch
○ Code must get approved by a reviewer

○ Reviewer was responsible for local testing of new feature



Market Survey

● Competing applications: PlayPass and GolfSoftware
○ Cheap or free

○ Ability to schedule a tournament or round robin league

● Our Application
○ Includes the features competing applications offer

○ Built for Tina’s league specifically

○ Automatic pairing shuffling and reassignment

○ Tracks weekly scores, winners, and standings



Resource Requirements

● Project hosted on AWS at no cost

● Application built with free resources
○ Node.js, DynamoDB, React, Netlify

● Since we are using resources free to the public only requirement is that we have internet access



Potential Risks & Mitigation

Identified our biggest risks as:

● Environment setup

● User interface design

● Unforeseen issues during testing process

These were mitigated by:

● Frequent communication with teammates and client

● Working together on tasks and having teammates review each merge request

● Making use of online tutorials and other free resources



System Design



Functional Decomposition



Demo

https://docs.google.com/file/d/1eUhRM99seChPQ_XsIKJA5pLe1GnqjQaS/preview


Technologies Used

Production
● Utilize AWS free tier for backend
● Node.js chosen for its cold starts which will be the majority of interactions
● DynamoDB chosen for compatibility with AWS free tier and is ideal for serverless architecture
● Netlify chosen for simplicity of deployment and domain configuration
● Single Page Application written in React

Local Dev
● Docker
● DynamoDB-local
● Serverless framework



Cloud Architecture



Scheduling Algorithm Requirements

Initial Schedule Generation

● Teams should be paired if possible 

Schedule Shuffling when check-in is complete

● Keep outings short
○ Fewer Hole Assignments

○ Teams start in line:

■ Good starting holes: 1/2/3/4

■ Bad starting holes: 1/3/4/7

● Scores must propagate to each player’s original team for the season cumulative score



Testing
● Integration Tests

○ Full integration test suite using Postman to 
ensure HTTP handlers are functioning 
correctly.

● Unit Testing
○ 89% test coverage of all business logic and 

data access.
○ DynamoDB local test environments created 

and re-seeded before every test to ensure 
database queries are correct

● Manual UI testing
○ All Merge Requests are QA’d by a second 

member of the team.
○ If a bug was found during the QA process, 

the author of the Merge Request was 
required to make the necessary changes 
before requesting another round of testing.



Process Evolution / Lessons Learned

Process Evolution

● Continuous Integration Issues
○ Decided to abandon CI, instead testing 

locally for each Merge Request

● Local development setup difficulties

● Automated Interface Testing

Lessons Learned

● A good development environment setup 

can save hours of work 

● Testing in a Serverless environment can be 

difficult

● Proper planning makes development much 

simpler



Questions?



Scheduling Shuffling Algorithm Implementation 


