Electronic
Golf League Scheduler

Ethan Evans, Aidan Andreas, Brady Zalasky, Nick Landon, Maxwell Farver

Team: sddec21-03

Website: https://sddec21-03.sd.ece.iastate.edu
Advisor: Mai Zheng
Client: Tina Prouty

https://sddec21-03.sd.ece.iastate.edu

Problem Statement

Create a web application to handle golf teams and matchups
Current system can’t handle the current club size
New system should be user friendly and easy to maintain

Ideally should cost no more than a few dollars a month

FHoney Creek

GOLF CLUB

Team Member Roles

Frontend Brady

Backend Aidan and Nick

Full-Stack Max and Ethan

Wireframe Designs

Golf Scheduler

Hole Team 1

(1] Blue Team

2] Green Team
3] Purple Team
(4] Brown Team

Assignments

Team2

Red Team
Yellow Team
Orange Team

Teal Team

Schedule

Teams

Hole Assignments

Date Shown: August 14th

G @D
G €D
o> @D

Add New Team

Leaderboard

Settings

Golf Scheduler Assignments Schedule Teams Leaderboard

Upcoming Outings

Date Participants

8/14/2021 1000am E3
8/21/2021 1000am 2
8/28/2021 1000am 2
8/4/2021 1000am S

Add New Team

Settings

Golf Scheduler

Add New Team

Assignments ~ Schedule Teams Leaderboard
Team Pairings
Toambiame embars
|
Blue Team suzyQ =
49 <
Red Team Tina Pajak
Jane Doe [ooee]

Settings Golf Scheduler Assignments Schedule Teams Leaderboard
League Leaderboard
Currently Shown: Cumulative
Team Score
© BlueTeam 3
@ RedTeam A
© Orange Team 2
© TealTeam 3
© Yellow Team 5
© Purple Team

Settings

Project Requirements

e Functional

° Economic

e User Interface

o User input for teams and players

o Leaderboard to keep track of score

o Schedule for upcoming outings

o Creates a schedule for when a new outing is created

o Minimal or low monthly cost

o Simple to use
o Features clearly defined
o Modern and professional design

Technical Considerations

Cost played an important role
e AWS preferred cloud provider
o Generous free tier

e DynamoDB
o Low latency

e NodelS
o Handle cold starts well
o Netlify

o Simplicity of deployment and cost

Development Approach

e Utilized a Trello board for Project Management
o Backlog, In Progress, Ready for Review, Done
o Color coding and assigning tasks
e Slack was form of a communication to bring up questions/concerns
e Development had to be done on a feature branch

o Code must get approved by a reviewer
o Reviewer was responsible for local testing of new feature

Market Survey

e Competing applications: PlayPass and GolfSoftware
o Cheap or free
o Ability to schedule a tournament or round robin league

e Our Application

o Includes the features competing applications offer

o Built for Tina’s league specifically

o Automatic pairing shuffling and reassignment

o Tracks weekly scores, winners, and standings

Resource Requirements

® Project hosted on AWS at no cost
e Application built with free resources
o Node.js, DynamoDB, React, Netlify
e Since we are using resources free to the public only requirement is that we have internet access

Potential Risks & Mitigation

Identified our biggest risks as:

e Environment setup
e User interface design
e Unforeseen issues during testing process

These were mitigated by:

® Frequent communication with teammates and client
e Working together on tasks and having teammates review each merge request
e Making use of online tutorials and other free resources

Functional Decomposition

Golf League
Scheduler

; v .

Build a Handle Absent Keep Track of
Schedule Players Team Scores
Create A Plgsgrﬂs":re Save Scores
Member Present for an Outing
Create A / y _ | Update Team
™1 Team In-app On Paper | Running Total
Merge Teams
Create An : T Update any
™| outing =] with Missing Ls| substituted Team's
Players 3
running total
Create A Delete Extra
> Hole e Hole
Assignment Assignments

https://docs.google.com/file/d/1eUhRM99seChPQ_XsIKJA5pLe1GnqjQaS/preview

Technologies Used

Production

e Utilize AWS free tier for backend
e Node.js chosen for its cold starts which will be the majority of interactions
e DynamoDB chosen for compatibility with AWS free tier and is ideal for serverless architecture
e Netlify chosen for simplicity of deployment and domain configuration
® Single Page Application written in React
Local Dev
e Docker
e DynamoDB-local
e Serverless framework

Cloud Architecture

Client

HTTP Request

.

AWS API| Gateway

C

r

|5

w

r

Hole Assignment
Service

Scheduling Algorithm Requirements

Initial Schedule Generation
e Teams should be paired if possible

Schedule Shuffling when check-in is complete

e Keep outings short
o Fewer Hole Assignments
o Teams start in line:
m Good starting holes: 1/2/3/4
m Bad starting holes: 1/3/4/7

® Scores must propagate to each player’s original team for the season cumulative score

Testing

Integration Tests
o Full integration test suite using Postman to
ensure HTTP handlers are functioning
correctly.

e Unit Testing
o 89% test coverage of all business logic and
data access.
o DynamoDB local test environments created
and re-seeded before every test to ensure
database queries are correct

e Manual Ul testing
o All Merge Requests are QA'd by a second
member of the team.
o If a bug was found during the QA process,
the author of the Merge Request was
required to make the necessary changes
before requesting another round of testing.

Process Evolution

Process Evolution / Lessons Learned

Continuous Integration Issues
o Decided to abandon Cl, instead testing
locally for each Merge Request

Local development setup difficulties
Automated Interface Testing

Lessons Learned

e Agood development environment setup
can save hours of work

e Testing in a Serverless environment can be
difficult

® Proper planning makes development much

simpler

oy

Questions?

Scheduling Shuffling Algorithm Implementation

fillMissingSlots():

i« o0
j ¢« length of allHoleAssignments
while (j < i):

foreach (hole assignment in toUpdate):
orphanedPlayers, orphanedTeams

A = Sitsx oF e (Ele neesking Flaves while (there are still orphaned players or teams):

j ¢« index of next hole with players than can be moved

if (3 > i):

orphanedTeams ¢« any teams with both players confirmed

orphanedPlayers ¢« any players without a confirmed partner

