
Electronic Golf League Scheduler

Design Document

Team Number: sddec21-03

Client: Tina Prouty

Advisor: Mai Zheng

Team Email Address: sddec21-03@iastate.edu

Team Website: https://sddec21-03.sd.ece.iastate.edu

Executive Summary

Development Standards & Practices Used
● Agile development

● Responsive Web Development

● Continuous integration

● Code reuse

● Data privacy

● Software unit testing

● User interface testing

Summary of Requirements

● Dynamic scheduling system of golf hole assignments for both individuals

and teams

● Account for absences and change in partners within schedule

● Notify users of hole assignments and tee times via push notification

● Store data related to what team played one another, starting hole

assignment, and score

● Fast load times and no delays in API requests

● Minimal cost or no cost to client

● Low technical maintenance

● User friendly interface

Applicable Courses from Iowa State University Curriculum
List all Iowa State University courses whose contents were applicable to your

project.

● Software Engineering 309: Software Development Practices

● Software Engineering 319: Construction of User Interfaces

● Software Engineering 329: Software Project Management

● Software Engineering 339: Software Architecture and Design

● Computer Science 363: Introduction to Database Management Systems

1

New Skills/Knowledge acquired that was not taught in courses
● ReactJS

● Node.js

● TailwindCSS

● DatoCMS

● Netifly

● Amazon Web Services

● Docker

2

Table of Contents
1 Introduction 5

1.1 Acknowledgement 5

1.2 Problem and Project Statement 5

1.3 Operational Environment 5

1.4 Requirements 6

1.5 Intended Users and Uses 7

1.6 Assumptions and Limitations 7

1.7 Expected End Product and Deliverables 7

2 Project Plan 8

2.1 Task Decomposition 8

2.2 Risks And Risk Management/Mitigation 9

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 10

2.4 Project Timeline/Schedule 10

2.5 Project Tracking Procedures 10

2.6 Personnel Effort Requirements 11

2.7 Other Resource Requirements 11

2.8 Financial Requirements 11

3 Design 12

3.1 Previous Work And Literature 12

3.2 Design Thinking 12

3.3 Proposed Design 13

3.4 Technology Considerations 16

3.5 Design Analysis 17

3.6 Development Process 17

3.7 Design Plan 17

4 Testing 19

4.1 Unit Testing 19

4.2 Interface Testing 19

4.3 Acceptance Testing 19

4.4 Results 19

3

5 Implementation 20

6 Closing Material 20

6.1 Conclusion 20

6.2 References 20

6.3 Appendices 20

4

1 Introduction

1.1 ACKNOWLEDGEMENT

We want to acknowledge Tina Prouty for the opportunity to work on this project. Thank you for
your time and willingness to work with us. This project allowed us to work with industry-leading
technology. Also, this project taught us to interact with a client and take an idea from conception to
production.

Mai Zheng, we would like to thank you for your time and guidance during this project. We
appreciate your technical expertise and feedback.

1.2 PROBLEM AND PROJECT STATEMENT

Problem Statement:

The women's golf league at Honey Creek course has gained more members than the current system
can handle, an excel spreadsheet. Our client Tina Prouty would like to have an application that can
enter individuals/team names and create hole assignments for them. If there is an absence by a
team member, the absent golfer must be replaced, and the system must record the new golfer. If a
team is missing altogether, then the application must reschedule the starting hole assignments.
Each team member who golfed, the score they finished the course with, and their starting hole
assignment from week to week must be recorded until the end of the golf league season. Currently,
there are no free or low-cost options out there for a similar application. The available options do
not have all the necessary features desired by the client.

Solution Approach:

The solution to this problem will be developing a responsive web application. The application will
be used on mobile or desktop devices for ease of convenience for the client. Amazon Web Services
will manage the application's backend since it provides a free tier and will be low cost to the client.
The application will be deployed on Netfily, which will be low-cost to the user. The web application
will have its registered domain specified by the client. This solution will provide a low setup cost
and minimal monthly fees.

1.3 OPERATIONAL ENVIRONMENT

Netfily will host the web application, and Amazon Web Services will manage the database. Upon
deployment of the application, the user will have little to no interaction with these services, making
the application maintenance-free. If the client needs to interact with either of these services, there
will be instructional manuals for each service. Otherwise, she can consult the developer team.

5

1.4 REQUIREMENTS

Functional Requirements

● Enter individuals and team members names
● Create an initial schedule for the hole assignments
● Account for absences by individuals/teams and able to enter replacements as needed
● Schedule will dynamically switch based on individual/team absences
● Keep track of golf scores, what team played, and the starting hole assignments throughout

the duration of the league

Economic Requirements

● Low Cost
● Minimal monthly cost or no monthly cost

User Interface Requirements

● Simple to use
● Features are clearly defined
● Design is modern and professional

Version Control Requirements

● Each commit must contain a message with a detailed description for what is being pushed
● New features will be implemented on separate branches
● Feature branches being merged to master must go through a code review done by another

team member

Software Testing Requirements

● User interface testing will be done with Selenium to ensure UI is working properly
● Mocking frameworks will be used to test API requests
● Continuous integration will be used to ensure code being push adheres to system

specifications

Software Security Requirements

● Application will use modern security practices to prevent any known security flaws
● Developer team and client are the only ones to have access to root accounts for third party

services

6

1.5 INTENDED USERS AND USES

The end-user will be the person who is administering the golf league. The administrator will have
full access to the application, which includes changing hole assignments and teams. The other users
involved will be able to view this schedule and be notified of any schedule changes. These users will
not have any of the privileges of the administrator.

1.6 ASSUMPTIONS AND LIMITATIONS

Assumptions:

● Information from previous technology will be used (excel document)
● Website will be accessed from mobile and desktop computers
● There will be only one user using the application, essentially an administrator
● The application will only be used for the women's golf league
● Application will only be used for one golf course (Honey Creek)
● Two players on each team, able to be changed based on member absences
● Automatic rescheduling

Limitations:

● Must follow standard design principles
● Users must be able to access the application from the golf course main website
● The application must be low maintenance to the client
● Budget constraints, the cost should be little to no expense to the user

1.7 EXPECTED END PRODUCT AND DELIVERABLES

The expected end product will be a web application able to be accessed via a specified URL domain
by the client. Amazon Web Services will host the database. The benefit of this is that it will allow
the server to be up at all times, and the application will not need a dedicated server. The client can
expect this application to be in production by the end of December 2021. Before then, there will be
multiple prototypes developed to gain feedback from the client. Along with the application, the
user can expect a manual on how to use the application and manage any third-party services. The
user can expect to have a detailed document describing all login information used for third-party
services.

7

2 Project Plan

2.1 TASK DECOMPOSITION

The tasks below are broken down into sections consisting of planning, designing and
implementation, testing, and delivery

Planning:

● Meet with client to discuss software requirements
● Decide on technology stack

Design & Implementation:

● Create wireframe and confirm design with client
● Setup development environments
● Develop the user interface of the web application
● Design the database
● Migrate the front-end and back-end

Testing:

● Perform unit testing and user interface testing
● Security testing and code refactor

Delivery:

● Migrate application to a production environment

8

2.2 RISKS AND RISK MANAGEMENT/MITIGATION

Task Risk Description
Risk Level

(1 is Lowest &
10 is the Highest)

Meet with client to discuss
software requirements

Risk of not understanding the
requirements as the user has

described
2

Decide on technology stack
The selected tools do not work

together or do not work correctly
together

3

Create wireframe and confirm
design with client

The client does not like the wireframe
designs and takes more iterations than

anticipated
3

Setup development
environments

Docker containers take more of a
learning curve and not able to get the

tooling to work correctly
5

Develop the user interface of
the web application

The CSS code is tough to create,
resulting in the actually interface not

looking like the
4

Migrate the front-end and
back-end

The code libraries do not migrate well
and makes it tougher for the

developers to debug
1

Perform unit testing and user
interface testing

The tests that are created fail and
reveal more bugs in the code than

originally anticipated
3

Security testing and code
refactor

There are more security flaws and
takes longer to refactor the code 2

Migrate application to a
production environment

The way in which take the application
to production proves to not work and

must find a different way
2

9

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

We will be using a Kanban software development process. This type of development process is
defined as being incremental not iterative. To measure the progress of the project we will be
utilizing a Kanban board.

2.4 PROJECT TIMELINE/SCHEDULE

2.5 PROJECT TRACKING PROCEDURES

Our team is implementing a Trello board as our primary method of keeping track of the status of
various tasks. Our hope in documenting our schedule in this way is to more effectively portray the
status of the tasks we will be completing. Additionally, we are using a Slack group as our primary
method of written communication as it allows for a faster workflow than email due to the ability for
users to talk at the same time in various channels. We also plan to utilize GitHub to easily share
code between various members, especially since some of us are not on campus. We plan to use git
issues to easily show what needs to be done on the project, the ability to assign issues to different
members will come in handy here as well.

10

2.6 PERSONNEL EFFORT REQUIREMENTS

Task Task Description Hours to Complete

Meet with client to
discuss software

requirements

Meeting with the client will allow us as a
team to better understand the end users
and the functionality of the application.

Once these are solidified we will then
create a requirements list to make sure that

each requirement is being met.

3 Hours

Decide on technology
stack

Upon finalizing the requirements we will
begin to research what technology will best

suit the clients needs. We will be using a
comparison chart to do this.

5 Hours

Create wireframes

Based on the requirements and
functionalities listed by the client we will
begin to design wireframes to provide the

client with an overview of the user
interface. This process will have multiple
iterations that will include designing and

then confirming the design to clients
expectations.

15 Hours

Setup development
environments

To reduce the likelihood of compatibility
issues between operating systems and
likelihood we will be creating docker

containers. Within this task the team will
be setting up a CI/CD and a git

environment to be used. The Git
environment will follow a certain file

structure that all developers must follow.
Git will be using feature branches to merge

to master and code review.

5 Hours

Design user interface

Taking the wireframes we will begin to put
these designs into code. While creating

these we will enforce strict styling
guidelines for the colors and text used.

React will allow for the reuse of
components which reduces the amount of

code to maintain.

30 Hours

Design the database

The team will design an ER diagram to
ensure all developers understand the

design. The database will be created using
a variety of technologies including

DynamoDB and node.js.

30 Hours

11

Task Task Description Hours to Complete

Migrate front-end and
back-end

Upon completion of the front-end and
back-end the team will begin to migrate

the code. Ensuring that the application as a
whole works together and is performing as

expected.

10 Hours

Unit Testing & User
Interface Testing

Each API request will be tested using Unit
Testing. This will ensure that the backend

performs as expected under certain
circumstances. The user interface testing

will be conducted to ensure that each part
of the interface is usable and does not

crash the system. Upon completion of unit
and user interface testing the developers
will fix the bugs found and then confirm

that all tests are working as expected.

15 Hours

Security Testing and
Code Refactor

The application will ensure that the user
authentication is working correctly. There
will be a refactor process to ensure all code

is ready for production and all security
measures are ensured

5 Hours

Migrate application to
production and deliver

application to client

The application will then be moved from
the development environment to a

production environment. The application
will then be hosted via a third party service

and all users will be able to access.

5 Hours

2.7 OTHER RESOURCE REQUIREMENTS

This project will be created using online resources available to the public. The only requirement is
that we have access to the internet in order to use these resources.

2.8 FINANCIAL REQUIREMENTS

There will be no financial requirements involved in the creation of this project. There may be a
minimal monthly payment required for the use of AWS.

12

3 Design

3.1 PREVIOUS WORK AND LITERATURE

There are a few competing applications in the same space as our product, with PlayPass and
GolfSoftware being the most prevalent options. Both options are free or cheap and offer the ability
to schedule a tournament or round robin league for a group of golfers. There are a few points that
separate this project from these applications.

This project is built with a specific user set in mind, which allows the team to fine tune certain
choices to deliver a more comprehensive product. The first point is the inclusion of automatic
pairing shuffling and reassignment. Neither of the leading products offer this option, any changes
in personnel would require a manual regeneration of the tournament.

This project also differentiates itself by tracking the weekly scores, winners, and standings of each
round in the league. GolfSoftware tracks which golfer in a pairing wins, but not scores or any side
competitions such as closest to the pin.

Finally, this project lets groups compete as a team. Neither of the competing products offer this
capability.

3.2 DESIGN THINKING

There were a large number of ways to accomplish this task, being that there was no prior
application to build off of or integrate with. While helpful in a sense, it posed a different challenge
of narrowing down our options to a select few that were simpler to analyse and compare. To start,
we selected a few requirements that would play a large part in the decision making process, such as:

- Cost needs to be kept low.
- Project needs to be easily extensible, so that the team can add new features if opportunities

for improvement arise.
- The application must be user friendly for a non-technical audience.

With those requirements laid out, we were able to throw out some options such as platforms that
have a monthly cost for hosting and platforms without a free tier. It was helpful that the amount of
traffic expected to flow through the application is low, meaning that it is likely that it will stay
within the free tier of some platforms.

Possible development technologies for the project were compared and selected based on the
familiarity of the tool/language/platform of the team, simplicity, and cost. Cost was the dominant
feature in the decision making process.

13

3.3 PROPOSED DESIGN

IEEE defines multiple software engineering standards. Of those standards there are ones that are
more applicable to our project than others. The types of standards we defined as being applicable to
our project relating to customer interaction., product development, and testing. IEEE has a
standard called ‘Standard for Application and Management of the Systems Engineering Process’. In
this standard, it is described how to meet the customers requirements, needs and constraints.

The next standard that is applicable to our project is the ‘Software Life Cycle Processes’, this
engineering standard describes the framework for software lifecycle management. This standard
goes into detail describing how to develop, maintain, and operate the software of our project. Unit
testing is going to be largely incorporated into our project. The standard that relates to unit testing
is ‘Standard for Software Unit Testing’, in this standard it describes best practices and approaches to
implement unit testing for our project.

There are a few software development standards that played a large role in the development and
evaluation of the various application designs presented below.

API - Microservices/Serverless - Selected

Each microservice will run on an AWS Lambda instance to provide low-latency operation, even
during cold start situations. AWS DynamoDB will be used as the main database for the application.
To facilitate this, the team will be utilizing the Serverless Framework with NodeJS to manage
infrastructure as code and reduce the complexity of deploying to AWS and track all changes to
infrastructure inside of git for version control.

Microservices will use Gitlab CI/CD for Continuous Integration and Deployment to AWS.

Each service will contain a single domain area. By doing so, each service is very loosely coupled to
other services, allowing for rapid iteration between services without causing breaking changes
elsewhere. Listed below are the services that the team will be implementing.

Services:

● Auth: Handles authentication and authorization for users.
○ Register
○ Login
○ Logout
○ Reset Password

● Users: Tracks individual details and performance for a golfer throughout the season.
○ Personal details such as email, name, etc.
○ Average Score
○ Season standing
○ Contest wins

● Teams: Groups of users that make up individual teams. Handles team shuffling and result
tracking.

○ Season standing
○ Current members
○ Contest wins

● Outings: Handles scheduling and team pairings for each golf outing.
○ Schedule

■ Team
■ Starting Hole

14

● Leagues: Overall league standings and organization.
○ Team Leaderboard
○ Individual Score Leaderboard
○ Contest Winners

Pros:

● Utilizing a serverless architecture with microservices aids in keeping costs low by only
running the application when absolutely necessary.

● Microservice applications are extensible by design. As the project progresses, the team will
have the ability to add features if requested without the need to alter other aspects of the
project.

● HTTP Request validation handled automatically by AWS.
● Simpler testing through mocking other services.
● Auto-provisioning of resources from AWS.

Cons:

● Local development requires a lot of setup and can be problematic if not configured
properly.

● Steeper learning curve for communication between services.
● Continuous Integration and Deployment is complicated.

API - Monolithic - Not Selected

The team will implement a layered architecture. By doing so, each layer will be loosely coupled with
the other layers of the application, allowing for easier testing of each layer by using mocks when
interacting with outside layers.

The team will “code to interfaces” to allow the logic of each layer to be changed without other layers
requiring knowledge of the changes. The interface that outside layers use will remain the same,
while the logic underneath is changed.

The application will be made up of four layers:

● External: Any execution details for external services such as email platforms are held in this
layer.

● Persistence: All database interactions will be handled here.
○ Repositories
○ Database configuration

■ Migrations
● Core: Domain logic for the application is stored here.

○ Services
● API: This layer exposes a REST API for the frontend to communicate with.

○ HTTP Endpoints

Layers are only dependent on the layer directly beneath themselves. The API interacts with the Core
layer, but has no connection to the Persistent or External layers. The Core layer interacts with both
the Persistence and External layers. The Persistence and External layers do not interact with any
other code, they only expose interfaces in which to be interacted with by the Core layer.

Hosting of the Monolithic application will use the Heroku free tier. This provider provides
git-connected Continuous Integration and Deployment and a PostgreSQL database.

15

Pros:

● Smaller learning curve for development.
● Continuous Integration and Deployment is simple and triggered by pushing to the main

branch on a git repository.

Cons:

● Heroku cold-start time is very slow and could impact user satisfaction.
● Much larger code-base due to using an interface for every service and repository.
● HTTP Request Validation is done manually by the developer.

Application UI - Web Application - Selected

A web application provides a cross platform and device-agnostic user interface for the project. The
team will be using ReactJS as the application framework to aid in development, with MaterialUI as
the design foundation to ensure that the application is visually appealing. React Hooks will be
preferred over class based components during development.

The project will be broken up into individual features, with a main component to handle routing
and application context and state management. Each feature will be structured similarly to the
overall application, with a main component and sub-directories for internal components. Each
directory will hold these files:

● ComponentName.js - Markup and state management for the component.
● Requests.js - All API requests used in the component.

The web application will use Netlify for free hosting and git-driven Continuous Integration and
Deployment. The domain will be managed by Route53 on AWS.

Pros:

● No need for installation or updating once the application is deployed.
● Works with all devices.
● Free hosting.

Cons:

● An internet connection is required to use the application.

3.4 TECHNOLOGY CONSIDERATIONS

AWS was chosen over Azure and Google Cloud Platform due to the very generous free tier for their
services. AWS costs for the application are expected to be less than one dollar a month.

DynamoDB was chosen over other SQL and NoSQL database options due to the AWS free tier. Its
low latency for reads and writes also makes it ideal for serverless applications where runtime is
what monthly costs are based on.

NodeJS was chosen over other Lambda runtimes due to its speed during cold-starts, which we
expect to be the majority of interactions with the API. Jest will be used for unit testing.

Netlify hosting was chosen over AWS Cloudfront for the web application due to the simplicity of
deployment and domain configuration.

16

3.5 DESIGN ANALYSIS

The design plan outlined in this document is meant to be a starting point. We believe that this
design will change iteratively throughout the development of the project as new needs are
discovered or shortcomings appear.

When one of the previously specified events occurs, the team will first evaluate which area of the
current design needs to be addressed. Once identified, themteam will then decide whether the
current implementation plan can be altered to fit the new requirements, or if a new plan needs to
be created.

In the event that the current plan is insufficient and needs to be replaced, the following process will
be followed to develop and refine any new solutions.

1. Brainstorm with a wide field of view to identify and select any possible options.
2. Narrow down the options found in the previous step by digging deeper into each one. The

goal will be to narrow the option count to 3 or less.
3. Create an implementation plan for the remaining options.
4. Evaluate the new implementation plans and select the best one, keeping the following

qualities in mind:
○ Cost.
○ Complexity.
○ Addition of new technology or platforms.
○ User friendliness (if applicable).

3.6 DEVELOPMENT PROCESS

The team will be utilizing a Kanban development process for organizing and selecting tasks for this
project. A Kanban process was selected for a couple of reasons. Firstly, it allows the team to add
more items and features to the backlog as the project progresses. This will help with prioritization
and let the team extend the feature set of the end product without overreaching. Secondly, due to
Kanban being a looser form of Agile development than the strict sprint-based method of Scrum, the
teams varying schedules and workloads during the course of each semester can be accounted for
more efficiently without seemingly bringing progress to a halt during exam weeks.

3.7 DESIGN PLAN

Our plan is to separate the backend and frontend into a web application and REST API.

Web Application

The user interface for the project will be a Single Page Application written in React. Each page of
the application will be contained within its own directory, with all components pertaining to the
page held within that directory. In doing so, adding new pages to the application is trivial and will
not affect the operation of other pages.

Interface components will be split by functionality on a case by case basis. When a component
seems to gain more functionality than originally intended, the developer will break it up into
smaller components for readability.

17

Hosting and deployment will be set up in a free Netlify account to automatically deploy when a
commit is pushed to the main branch of the git repository.

REST API

The backend for the project will be written in NodeJS, with each endpoint (GET, POST, UPDATE,
DELETE) being hosted on it’s own AWS Lambda instance. Prior to reaching its destination lambda,
a request will pass through an AWS API Gateway.

The API Gateway will do the following:

- Validate the request body and respond with an error message if it is not properly formatted.
- Attach the requestor’s authorization credentials so the endpoint can return user-specific

data.
- Pass the request to the correct lambda endpoint.

Each service, shown in Figure 1 as a box of nodes, will have its own table in the DynamoDB database
schema. DynamoDB is distributed by design, so there is no need to have multiple instances
running.

AWS API Gateway, Lambda, and DynamoDB will run within their respective free tiers. The only
exception is that API Gateway will have a negligible cost (< $0.50) after the first year of use.

Fig. 1 - High level backend architecture

18

4 Testing

4.1 UNIT TESTING

Unit testing will be executed within each microservice in isolation. The team will be following Test
Driven Development (TDD) to help drive the development cycle. TDD will help by allowing for
simpler development with the Serverless Framework, due to the relative complexity of working with
services that must be mocked to run locally.

Each service will require tests for all business logic and database interactions. All tests will be
executed within the continuous integration pipeline when a merge request is created. If any tests
fail, that pull request will need to be remediated and resubmitted when the branch is in working
order.

4.2 INTERFACE TESTING

Testing multiple services will be done in the form of HTTP requests to the application that mimic
how it will be used in production. An endpoint will commonly need to communicate with multiple
services to accomplish the required task, by treating interface testing and integration testing as the
same step, a greater level of test coverage can be achieved with less time spent on the development
of the test suite.

Interface/integration testing will also be executed in the continuous integration pipeline after the
completion of unit testing. To execute these tests, a script will be written that sends a curl request
reflecting each test and its expected outcome. If any tests fail, the situation will be handled in a
similar manner to unit test failures.

4.3 ACCEPTANCE TESTING

To ensure that the team is delivering features and functionality that is in line with the client’s goals
and objectives, each feature branch will be pushed to a staging environment before being deployed
to a production environment. This staging environment will mimic the production environment
and will be available to the client.

When a new feature is ready for review, the team will notify the client and request that they take
some time and test out the new feature and overall “flow” of the application. Upon the completion
of the client’s review, the team will address any issues or changes brought to attention. If none
arise, or it is deemed that the feature is at a stage that it can be promoted, the staging environment
will be pushed to production.

4.4 RESULTS

Our initial testing results are centered around the Acceptance Testing area of the testing plan.
Multiple client meetings have allowed the team to develop and present to the client a set of User
Interface Mockups that will be the starting point for the development of the Web Application. The
client has provided feedback pertaining to these mockups, allowing the team to iterate on our
design and start the development phase of the project with a firm understanding of what the client
is expecting of the application.

19

5 Implementation
Our implementation plan for next semester is to separate the frontend and backend development
and work to build them out at the same time. We will designate team members to either frontend
or backend, however each team member will still have an understanding of each project layer and
will be able to contribute anywhere they are needed. After several meetings with our adviser, we
should have a really good understanding of what our client wants and what is most important, and
this will help give us a good structure to build off of. We will also be working hard this semester to
finalize our design plan, which will give us confidence in beginning the actual buildout. We may
start setting up our environments towards the end of this semester to make sure each team member
feels comfortable writing code at each layer and there are no hiccups getting started next semester.

6 Closing Material

6.1 CONCLUSION

We have met with the client to discuss the goals for the project. Since the user experience plays a
large role in the success of the project, the team has been designing wireframes to display how the
application will appear. The stack of languages and technologies has been decided upon. Also the
architecture of the project has been agreed upon and the design strategy. The driving force behind
these decisions was free to the client and the ease of development. Over the semester we will be
meeting with the client to discuss the wireframes and being sure all requirements are being met.

6.2 REFERENCES

Important Engineering Software/Hardware Design Standards. Software/Hardware Design
Standards. (n.d.). http://users.encs.concordia.ca/~ecewebdv/EDS/Software/std_list.htm.

6.3 APPENDICES

Manuals will be created for the client on how to use AWS if any problems ever occur.

20

